Macrophages in the tumor microenvironment have a significant impact on tumor progression.Depending on the signaling environment in the tumor, macrophages can either support or constrain tumor progression. It is therefore of therapeutic interest to identify the tumor-derived factors that control macrophage education. With this aim, we correlated the expression of ADAM proteases, which are key mediators of cell-cell signaling, to the expression of pro-tumorigenic macrophage markers in human cancer cohorts. We identified ADAM17, a sheddase upregulated in many cancer 2 types, as a protein of interest. Depletion of ADAM17 in cancer cell lines reduced the expression of several pro-tumorigenic markers in neighboring macrophages in vitro as well as in mouse models.Moreover, ADAM17 -/educated macrophages demonstrated a reduced ability to induce cancer cell invasion. Using mass spectrometry-based proteomics and ELISA, we identified HB-EGF and AREG, shed by ADAM17 in the cancer cells, as the implicated molecular mediators of macrophage education. Additionally, RNA-seq and ELISA experiments revealed that ADAM17-dependent HB-EGF-ligand release induces the expression and secretion of CXCL chemokines in macrophages, which in turn stimulates cancer cell invasion.In conclusion, we provide evidence that ADAM17 mediates a paracrine EGFR-ligand-chemokine feedback loop, whereby cancer cells hijack macrophages to promote tumor progression.