When coral species become extinct, their genetic resources cannot be recovered. Coral cryobanks can be employed to preserve coral samples and thereby maintain the availability of the samples and increase their potential to be restocked. In this study, we developed a procedure to determine coral species-specific requirements for cryobank freezing through determining suitable cryoprotective agents (CPAs), CPA concentrations, equilibration times, holding durations, viability rates, and cell amounts for banked coral cells, and we established the first ever coral cell cryobank. Coral cells, including supporting and gland cells, epidermal nematocysts, Symbiodiniaceae and symbiotic endoderm cells (SEC) were found from the extracted protocol. Approximately half of the corals from the experimental corals consisted of spindle and cluster cells. Gastrodermal nematocysts were the least common. The overall concentration of Symbiodiniaceae in the coral cells was 8.6%. Freezing using DMSO as a CPA was suitable for approximately half of the corals, and for the other half of species, successful cell cryopreservation was achieved using MeOH and EG. EG and DMSO had similar suitabilities for Acanthastrea, Euphyllia, Favites, Lobophyllia, Pavona, Seriatopora, and Turbinaria, as did EG and MeOH for Acropora, Echinopyllia, and Sinularia and MeOH and DMSO for Platygyra after freezing. At least 14 straws from each species of coral were cryobanked in this study, totaling more than 1884 straws (0.5 mL) with an average concentration of 6.4 × 106 per mL. The results of this study may serve as a framework for cryobanks worldwide and contribute to the long-term conservation of coral reefs.