We describe the development and assessment of a new terrestrial reference frame (TRF) based on a combination of geodetic techniques at the observation level over the period 2010–2022. Included in the solution are observations from the Global Positioning System (GPS), Satellite Laser Ranging (SLR) and Very Long Baseline Interferometry (VLBI). A key feature of our solution strategy is the use of space ties in low‐Earth orbit to connect SLR to GPS. Though the resulting TRF solution is based on only 12.6 years of data, it is competitive with the international (ITRF2020) standard in terms of fundamental frame parameters (origin and scale) and their temporal evolution, both linear and seasonal. The relative rates of origin (3D) and scale (at Earth's surface) are 0.2 mm and 0.1 mm respectively. Absolute scale and 3D origin (at epoch 2015.0) both differ by 2–3 mm. In addition to station positions and velocities, our combined solution includes Earth orientation parameters (EOP), low‐degree zonal coefficients (J2 and J3) of the geopotential and precise orbit solutions for all participating satellites (GPS, GRACE and GRACE Follow‐on tandems, Jason 2 and 3, and LAGEOS 1 and 2). We discuss potential benefits of our solution strategy and characterize the impacts of our new TRF on estimates of geocenter motion and sea level change from satellite altimetry.