A maximal chain in a tree is called a path, and a tree is called bounded when all its paths contain leaves. This paper concerns itself with first-order theories of bounded trees. We establish some sufficient conditions for the existence of bounded end-extensions that are also partial elementary extensions of a given tree. As an application of tree boundedness, we obtain a conditional axiomatisation of the first-order theory of the class of trees whose paths are all isomorphic to some ordinal α < ω ω , given the first-order theories of certain classes of bounded trees.