Usualmente, filósofos analíticos utilizam, implícita ou explicitamente, a formalização lógica em seus argumentos com o objetivo de regular inferências válidas em certos contextos racionais; nesse contexto, a lógica modal é usada para estruturar argumentos metafísicos. Porém, a própria escolha do sistema lógico que se pretende adotar exige certas assunções inicias. A relação entre espaços topológicos e a lógica modal proposicional S4 é conhecida desde 1944. Em 2008, Awodey e Kishida demonstraram que a lógica FOS4 -modal de primeira ordem -é completa em relação à classe de feixe-interpretações, interpretações fibradas com estrutura topológica. Neste projeto, investigo as propriedades topológicas das semânticas para S4 e FOS4. Tais sistemas, em particular S4, são localmente similares ao espaço euclidiano. De acordo com a física contemporânea, o espaço físico pode ser descrito como localmente euclidiano; mais do que isso, parece possível argumentarmos que nosso espaço de representação, lugar em que nossas ideias e conceitos são re-presentados, também é localmente similar ao espaço euclidiano. Tal similaridade local entre nossos espaço de representação, espaço de percepção (físico) e espaço lógico (racional) é meu principal argumento em favor da axiomática para S4 como caracterizadora do sistema que captura as leis lógicas para noções metafísicas. Tal posição é baseada em uma perspectiva cética-moderada, porque leva em conta a possibilidade de que tais leis existam, mas também reconhece nossas limitações para acessá-las. Procuro argumentar que nossas limitações epistêmicas e linguísticas em relação à completude dos "fatos do mundo" podem ser contornadas pela razão com a admissão de tais leis, a partir do qual podemos, de maneira um pouco mais segura, explorar questões relativas a problemas clássicos sobre o ser, identidade e a essência das coisas.