In dynamic nucleic acids nanotechnology, strand displacement is a widely used mechanism where one strand from a hybridized duplex is exchanged with an invading strand which binds to a toehold, a single-stranded region on the duplex. With proper design and kinetic control, strand displacement is used to perform logic operations on molecular level to trigger the conformational change in nanostructures, initiate cascaded reactions, or even for in vivo diagnostics and treatments. While systematic experimental studies have been carried out to probe the kinetics of strand displacement in DNA, there has not been a comparable systematic work done for RNA or RNA-DNA hybrid systems. Here, we experimentally study how toehold length, toehold location (5' or 3' end of the strand) and mismatches influence the strand displacement kinetics. Through comparing the reaction rates, combined with previous theoretical studies, we observed reaction acceleration with increasing toehold length and placement of toehold at 5' end of the substrate. We find that mismatches closer to the interface of toehold and duplex slow down the reaction more than remote mismatches. Comparison of RNA displacement and DNA displacement with hybrid displacement (RNA invading DNA or DNA invading RNA) is in part explainable by the thermodynamic stabilities of the respective toehold regions, but also suggest that the rearrangement from B-form to A-form helix in case of RNA invading DNA might play a role in the kinetics. The measured kinetics of toehold-mediated strand displacement will be important in understanding and construction of more complex dynamic nucleic acid systems.