Detecting dopamine is of great biological importance because the molecule plays many roles in the human body. For instance, lack of dopamine release is the cause of Parkinson's disease. Although many researchers have carried out experiments on dopamine detection using carbon nanotubes (CNTs), there are only a few theoretical studies on this topic. We study the adsorption properties of dopamine and its derivatives, L-DOPA and dopamine o-quinone, adsorbed on a semiconducting (10, 0) CNT, using density functional theory calculations. Our computational simulations reveal that localized states originating from dopamine o-quinone appear in the bandgap of the (10, 0) CNT, but those originating from dopamine and L-DOPA do not appear in the gap. Therefore, dopamine oquinone is expected to be detectable using an external electric field but dopamine and L-DOPA should be difficult to detect.