2006
DOI: 10.1103/physrevb.74.245103
|View full text |Cite
|
Sign up to set email alerts
|

First-principles calculations of hyperfine parameters with the Gaussian and augmented-plane-wave method: Application to radicals embedded in a crystalline environment

Abstract: A method for the calculation of hyperfine parameters in extended systems under periodic boundary conditions is presented, using the Gaussian and augmented-plane-wave density functional method, and implemented in QUICKSTEP. In order to increase the efficiency in larger systems, a hybrid scheme is proposed, in which an all-electron treatment for the nuclei of interest and a pseudopotential approximation for the remaining atoms in the simulation cell are combined. The method is validated first by comparing the h… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

4
88
0

Year Published

2007
2007
2020
2020

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 48 publications
(92 citation statements)
references
References 46 publications
4
88
0
Order By: Relevance
“…[16][17][18] In this regard, the so-called projector-augmented-wave ͑PAW͒ method proposed by Blöchl 19 has shown to yield highly accurate frozen-core wave functions in the core regions and hence is considered as a reliable method for calculating HFPs of systems with s-like SOMO, e.g., hydrogen defects in Si. 15 Another important aspect of HFPs computed through PP formalism has only very recently received attention: the effect of core spin polarization was considered by Yazyev et al 20 and Declerck et al 21 The former 20 is similar in spirit to the current work, but approaches the treatment of the core spin polarization differently. In the so-called core spin-polarization correction ͑CSPC͒ method, 20 a reconstruction of the AE wave functions and the frozen-valence spin-density approximation are used to solve the Kohn-Sham equations for core states only.…”
Section: Introductionmentioning
confidence: 74%
See 1 more Smart Citation
“…[16][17][18] In this regard, the so-called projector-augmented-wave ͑PAW͒ method proposed by Blöchl 19 has shown to yield highly accurate frozen-core wave functions in the core regions and hence is considered as a reliable method for calculating HFPs of systems with s-like SOMO, e.g., hydrogen defects in Si. 15 Another important aspect of HFPs computed through PP formalism has only very recently received attention: the effect of core spin polarization was considered by Yazyev et al 20 and Declerck et al 21 The former 20 is similar in spirit to the current work, but approaches the treatment of the core spin polarization differently. In the so-called core spin-polarization correction ͑CSPC͒ method, 20 a reconstruction of the AE wave functions and the frozen-valence spin-density approximation are used to solve the Kohn-Sham equations for core states only.…”
Section: Introductionmentioning
confidence: 74%
“…Moreover, within this approach, still one cannot calculate the anisotropic HFPs. In the latter, 21 a hybrid method is proposed in which the nuclei of interest are described with an all-electron treatment and a PP approximation is used for the remaining atoms. Nontheless, this method appears sensitive to the choice of basis set.…”
Section: Introductionmentioning
confidence: 99%
“…In energy minimizations and NEB runs, the Gaussian and plane waves (GPW) dual basis set method 42 was used, employing a TZVP triple-ζ Gaussian basis set 43 and plane waves (400 Ry density cut-off) with GTH pseudopotentials. 44,45 For the calculation of EPR properties (g-and hyperfine coupling tensors), we relied on recent implementations in the CP2K code, 46,47 employing the all-electron Gaussian and augmented plane wave (GAPW) method. 48 The density cut-off for the auxiliary plane wave basis set was 200 Ry and the all-electron TZVP basis 49 was used.…”
Section: Computational Detailsmentioning
confidence: 99%
“…A further major improvement in the calculations came from the implementation of HF [98] and g tensor calculations [99,100] in periodic codes (CP2K) using Gaussian and augmented plane wave basis sets. This allowed to perform the SH parameter calculations directly on the periodically optimized structure.…”
Section: Dft Calculations : Evolving Methodologymentioning
confidence: 99%