The possibility of using nitrogenated holey graphene (NHG) sheet to detect volatile organic biomarkers in exhaled breath of humans with kidney disease is investigated. Heptanal, hexanal, pentanal, and isoperene are known as the prominent biomarkers of chronic kidney disease. Adsorption of these molecules on NHG sheet is studied using density functional theory. All the molecules are weakly physisorbed on NHG sheet, which predicts easy desorption and the possibility of using NHG sheet as a reusable sensor. The NHG sheet acts as a semiconductor with a direct band gap. Adsorption of the considered molecules causes n-type semiconducting properties in the sheet. Increasing the concentration of the adsorbed molecules decreased the energy band gaps and consequently increased the electric conductivity of NHG sheet. Hence, the electronic properties of NHG sheet are sensitive to the presence and concentration of heptanal, hexanal, pentanal, and isoperene molecules. Our results open a new opportunity to design a new sensor to diagnose chronic kidney disease using exhaled breath analysis.