The optoelectronic achievement of a lattice matching InGaAs/InP lateral cavity surface radiating LASER in crystal orientations (100), (110), (111), (113), and (131) is computationally simulated utilising MATLAB by attempting to solve a k.p Hamiltonian of eight-band utilising only a finite difference strategy with spin-orbit linkage. To shift wave-vector k as well as Hamiltonian from traditional (100) plane orientation, tensor plane revolution equations are used. It is demonstrated that optical emission spectrum and crystal plane alignments have a significant correlation. At a carriers injection density of 2.50 x 1018 per cm3, the maximum and minimum gains are measured in the (111) as well as (100) orientations, respectively, with optimum emission wavelengths of 1770.00nm and 1680.00nm. This research will serve as a catalyst for the development of ultra-fast optoelectronic devices with improved performance thanks to the use of non-100 orientation epitaxial layers.