A key challenge in cadmium telluride (CdTe) semiconductors is obtaining stable and high hole density. Group I elements substituting Cd can form acceptors but easily self-compensate and diffuse quickly. For example, CdTe photovoltaics have relied on copper as a dopant, but this creates stability problems and hole density that has not exceeded 10 15 cm-3. If hole density can be increased beyond 10 16 cm-3 , CdTe solar technology can exceed multicrystalline silicon performance and provide levelized costs of electricity below conventional energy sources. Group V elements substituting Te offer a solution, but they are very difficult to incorporate. Using time-of-flight secondary-ion mass spectrometry, we examine bulk and grain boundary (GB) diffusion of phosphorous (P) in CdTe in Cd-rich conditions. We find that in addition to slow bulk diffusion and fast GB diffusion, there is a critical fast bulk diffusion component that enables deep P incorporation in CdTe. Detailed first-principles calculations indicate the slow bulk diffusion component is caused by substitutional P diffusion through the Te sublattice, whereas the fast bulk diffusion component is caused by P diffusing through interstitial lattice sites following the combination of a kick-out step and two rotation steps. The latter is limited in magnitude by high formation energy, but is sufficient to manipulate P incorporation. In addition to an increased physical understanding, this result opens up new experimental possibilities for Group V doping in CdTe applications.