We have studied electronic, structural, and transport properties of zinc-blende magnesium sulfide (zb-MgS). We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO) method. Our computational method is able to reach the ground state of a material, as dictated by the second theorem of density functional theory (DFT). Consequently, our findings have the physical content of DFT and agree with available, corresponding experimental ones. The calculated band gap of zb-MgS, a direct gap equal to 4.43 eV, obtained at the experimental lattice constant of 5.620 Å, completely agrees with the experimental band gap of 4.45 ± 0.2 eV. We also report total (DOS) and partial (pDOS) densities of states, electron and hole effective masses, the equilibrium lattice constant, and the bulk modulus. The calculated pDOS also agree with the experiment for the description of the states at the top and the bottom of the valence and conduction bands, respectively.