Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Potentilla anserina L. has an abundance of bioactive compounds and is widely recognized for its diverse applications in traditional medicine and as a food. In August 2023, typical symptoms of anthracnose were observed in 80% of P. anserina plants in Harbin, China. Symptoms, characterized by reddish-brown spots, tend to occur more frequently on leaves closer to the ground. They initially appeared as oval or irregular circles, measuring 1 to 3 mm in diameter, and later merged into larger patches surrounded by chlorotic areas on the leaves. Twenty leaves exhibiting characteristic symptoms were sampled. Each leaf was sectioned into 5×5 mm pieces at the interface between the diseased and healthy tissues. The sections were disinfected sequentially with 75% ethanol for 30 s, followed by 1% NaClO for 2 min, rinsed three times in sterilized distilled water. Post air-drying, samples were cultured on potato dextrose agar (PDA) plates and incubated at 26°C in the dark for 5 d, yielding nine morphologically similar single-spore isolates (JTC1 to JTC9). The colonies initially displayed gray aerial mycelia, becoming pale brown, accompanied by numerous black microsclerotia. The acervuli appeared black, protruded from the surface of the medium, and were adorned with dark brown setae. Setae (n=50) ranged from 58.4 to 188.2 μm in length, appearing dark brown to black, with smooth walls, rounded tips, swollen bases, and containing 1 to 4 septa. The conidia were hyaline, aseptate, cylindrical to spindle-shaped, with blunt and rounded ends, measuring 13.7 to 18.3 μm in length and 3.4 to 4.3 μm in width (n=50). Morphological analysis indicated a close affinity with Colletotrichum americae-borealis (Damm et al. 2014). For molecular identification, genomic DNA was extracted from three representative isolates (JTC1, JTC2, and JTC3).The ITS, HIS3,GAPDH, and ACT genes were amplified and sequenced using the primers described previously by Damm et al. (2014). The sequences were submitted to GenBank (ITS: PP338190 to PP338192; HIS3: PP355770 to PP355772; GAPDH: PP355773 to PP355775; ACT: PP355776 to PP355778). BLAST analysis showed 99 to 100% identity with C. americae-borealis type strain CBS 136232 (GenBank accessions: KM105224, KM105364, KM105579, and, KM105434, respectively). Multigene phylogenetic analysis positioned the three isolates close to C. americae-borealis. Pathogenicity tests were performed twice on 6-week-old P. anserina seedlings (cv. Qinghai Juema 1) in a greenhouse. A conidial suspension of the JTC1 isolate (1×10⁵ conidia/ml) was sprayed applied to ten pots, each containing two seedlings, and the plants in the control pots were sprayed with sterile distilled water. Two weeks after inoculation under greenhouse conditions (26/22°C day/night temperature, 12-hour photoperiod, 90% relative humidity), the inoculated seedlings exhibited brown spots and necrotic lesions similar to those observed in the field, C. americae-borealis was successfully reisolated from these symptomatic tissues. To the best of our knowledge, this is the first report of C. americae-borealis causing leaf spot on P. anserina in China. Anthracnose caused by C. americae-borealis is associated with leaf spot disease in oats (Wang et al. 2022), alfalfa (Li et al. 2021), and licorice (Lyu et al.2020). However, C. americae-borealis poses a significant threat to P. anserina in China as well, highlighting the urgent need to develop effective disease management strategies.
Potentilla anserina L. has an abundance of bioactive compounds and is widely recognized for its diverse applications in traditional medicine and as a food. In August 2023, typical symptoms of anthracnose were observed in 80% of P. anserina plants in Harbin, China. Symptoms, characterized by reddish-brown spots, tend to occur more frequently on leaves closer to the ground. They initially appeared as oval or irregular circles, measuring 1 to 3 mm in diameter, and later merged into larger patches surrounded by chlorotic areas on the leaves. Twenty leaves exhibiting characteristic symptoms were sampled. Each leaf was sectioned into 5×5 mm pieces at the interface between the diseased and healthy tissues. The sections were disinfected sequentially with 75% ethanol for 30 s, followed by 1% NaClO for 2 min, rinsed three times in sterilized distilled water. Post air-drying, samples were cultured on potato dextrose agar (PDA) plates and incubated at 26°C in the dark for 5 d, yielding nine morphologically similar single-spore isolates (JTC1 to JTC9). The colonies initially displayed gray aerial mycelia, becoming pale brown, accompanied by numerous black microsclerotia. The acervuli appeared black, protruded from the surface of the medium, and were adorned with dark brown setae. Setae (n=50) ranged from 58.4 to 188.2 μm in length, appearing dark brown to black, with smooth walls, rounded tips, swollen bases, and containing 1 to 4 septa. The conidia were hyaline, aseptate, cylindrical to spindle-shaped, with blunt and rounded ends, measuring 13.7 to 18.3 μm in length and 3.4 to 4.3 μm in width (n=50). Morphological analysis indicated a close affinity with Colletotrichum americae-borealis (Damm et al. 2014). For molecular identification, genomic DNA was extracted from three representative isolates (JTC1, JTC2, and JTC3).The ITS, HIS3,GAPDH, and ACT genes were amplified and sequenced using the primers described previously by Damm et al. (2014). The sequences were submitted to GenBank (ITS: PP338190 to PP338192; HIS3: PP355770 to PP355772; GAPDH: PP355773 to PP355775; ACT: PP355776 to PP355778). BLAST analysis showed 99 to 100% identity with C. americae-borealis type strain CBS 136232 (GenBank accessions: KM105224, KM105364, KM105579, and, KM105434, respectively). Multigene phylogenetic analysis positioned the three isolates close to C. americae-borealis. Pathogenicity tests were performed twice on 6-week-old P. anserina seedlings (cv. Qinghai Juema 1) in a greenhouse. A conidial suspension of the JTC1 isolate (1×10⁵ conidia/ml) was sprayed applied to ten pots, each containing two seedlings, and the plants in the control pots were sprayed with sterile distilled water. Two weeks after inoculation under greenhouse conditions (26/22°C day/night temperature, 12-hour photoperiod, 90% relative humidity), the inoculated seedlings exhibited brown spots and necrotic lesions similar to those observed in the field, C. americae-borealis was successfully reisolated from these symptomatic tissues. To the best of our knowledge, this is the first report of C. americae-borealis causing leaf spot on P. anserina in China. Anthracnose caused by C. americae-borealis is associated with leaf spot disease in oats (Wang et al. 2022), alfalfa (Li et al. 2021), and licorice (Lyu et al.2020). However, C. americae-borealis poses a significant threat to P. anserina in China as well, highlighting the urgent need to develop effective disease management strategies.
Anthracnose caused by various species of Colletotrichum is one of the most prevalent diseases in alfalfa worldwide that not only reduces forage yields but also severely compromises forage quality. A comprehensive survey was conducted in 2020 in the main production regions of northern China. The survey results showed that alfalfa anthracnose is prevalent in northern China, with the disease incidence ranging from 9% to 45% and the disease index from 5 to 17 (maximum possible score: 100). In total, 24 isolates were collected and identified as three Colletotrichum species (C. trifolii, C. truncatum and C. americae-borealis) based on morphological characteristics and phylogenetic analysis (combined sequences ITS, HIS3, ACT and GAPDH). The three species displayed remarkable environmental adaptability, exhibiting a capacity for growth, sporulation and conidial germination in temperatures ranging from 4 to 35 °C and in different nutrient conditions. Pathogenicity assays showed that C. trifolii was more virulent than the other two species, although the growth vigor (in terms of colony diameter, sporulation and conidial germination) of C. truncatum was the greatest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.