Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Cinnamomum camphora, known as the camphor tree, is an evergreen tree widely cultivated in Asia as an ornamental plant (Singh and Jawaid, 2012). In June 2023, several leaves on a total of 10 trees planted on a street in Suncheon, Jeonnam Province, Korea showed black spots. Disease incidence was observed in at least 15% of the 10 trees. The symptoms included circular spots with a light ash-colored center and dark brown borders. The size of lesions varied depending on the progress of the disease. The disease progressed by 30% on the tree leaves. To isolate the pathogen, we cut out the lesions on the leaf surface sterilized with 70% ethanol for one minute, washed three times with sterilized distilled water, dried, and placed on water agar. Then, it was incubated at 25°C for three days. Emerging hyphae from the samples were subcultured on potato dextrose agar (PDA), resulting in three independent isolates (SYP-F1226-1 to SYP-F1226-3) after single spore isolation from 3 independent trees. The isolates exhibited grayish fluffy mycelium in the center of the colony, while the edges were white on PDA. Conidia had rounded cylindrical shape and were 4.9 to 8.4 µm × 1.4 to 3.1 µm (avg. 5.9 × 2.1 μm, n = 100) in size. Appressoria were round, dark gray, produced at the tip of the germ tube after a septum formed the conidium. The morphological characteristics matched those of Colletotrichum species complexes. (Damm et al., 2012; Weir et al., 2012). For molecular identification, ITS (OR647338 to 40), GAPDH (OR657042 to 44), CHS-1 (OR657045 to 47), ACT (OR657048 to 50), and CAL (OR657051 to 53) sequences from isolates SYP-F1226-1~3 showed a 99.65%, 98.56%, 99.00%, 99.28%, and 99.52% identity with that of type strain C. gloeosporioides ICMP 17821 (JX010152, JX010056, JX009818, JX009531, and JX010445, respectively). Using the MEGA X program (Kumar et al. 2018), maximum likelihood analysis based on the concatenated sequences placed the isolates within a clade comprising C. gloeosporioides. Pathogenicity of SYP-F1226-1 was tested using three leaves from a 1-year-old branch of three independent healthy C. camphora plants. The leaf surfaces were sterilized by rubbing a cotton pad soaked in 70% ethanol and then wiping them with a sterilized cotton pad. The leaves per plant were inoculated with 5 mL of a conidial suspension (1 × 105 conidia/mL), both with and without wounding. Another three control leaves were inoculated with sterile distilled water, both with and without wounding. The inoculated leaves were wrapped in a plastic bag for 48 hours under conditions of 100% relative humidity. Spot symptoms were observed on both wounded and non-wounded leaves 21 days after inoculation. No symptoms were observed in the control on either of the wounded leaves. Pathogenicity tests were performed three times. The pathogen was re-isolated from the lesion after treatment, and its identity was confirmed using the five genes and morphological characteristics. This confirms the fulfillment of Koch's postulates. C. fioriniae (Liu et al, 2022) and C. siamens (Liu et al, 2022; Khoo et al, 2023) have been reported as the causal pathogen of anthracnose in C. camphora, but C. gloeosporioides has not been reported as a pathogen in C. camphora. To our knowledge, this is the first report of anthracnose caused by C. gloeosporioides on C. camphora in Korea. This study will provide symptomatic, mycological, and molecular biological information for the early detection of anthracnose disease in C. camphora plants.
Cinnamomum camphora, known as the camphor tree, is an evergreen tree widely cultivated in Asia as an ornamental plant (Singh and Jawaid, 2012). In June 2023, several leaves on a total of 10 trees planted on a street in Suncheon, Jeonnam Province, Korea showed black spots. Disease incidence was observed in at least 15% of the 10 trees. The symptoms included circular spots with a light ash-colored center and dark brown borders. The size of lesions varied depending on the progress of the disease. The disease progressed by 30% on the tree leaves. To isolate the pathogen, we cut out the lesions on the leaf surface sterilized with 70% ethanol for one minute, washed three times with sterilized distilled water, dried, and placed on water agar. Then, it was incubated at 25°C for three days. Emerging hyphae from the samples were subcultured on potato dextrose agar (PDA), resulting in three independent isolates (SYP-F1226-1 to SYP-F1226-3) after single spore isolation from 3 independent trees. The isolates exhibited grayish fluffy mycelium in the center of the colony, while the edges were white on PDA. Conidia had rounded cylindrical shape and were 4.9 to 8.4 µm × 1.4 to 3.1 µm (avg. 5.9 × 2.1 μm, n = 100) in size. Appressoria were round, dark gray, produced at the tip of the germ tube after a septum formed the conidium. The morphological characteristics matched those of Colletotrichum species complexes. (Damm et al., 2012; Weir et al., 2012). For molecular identification, ITS (OR647338 to 40), GAPDH (OR657042 to 44), CHS-1 (OR657045 to 47), ACT (OR657048 to 50), and CAL (OR657051 to 53) sequences from isolates SYP-F1226-1~3 showed a 99.65%, 98.56%, 99.00%, 99.28%, and 99.52% identity with that of type strain C. gloeosporioides ICMP 17821 (JX010152, JX010056, JX009818, JX009531, and JX010445, respectively). Using the MEGA X program (Kumar et al. 2018), maximum likelihood analysis based on the concatenated sequences placed the isolates within a clade comprising C. gloeosporioides. Pathogenicity of SYP-F1226-1 was tested using three leaves from a 1-year-old branch of three independent healthy C. camphora plants. The leaf surfaces were sterilized by rubbing a cotton pad soaked in 70% ethanol and then wiping them with a sterilized cotton pad. The leaves per plant were inoculated with 5 mL of a conidial suspension (1 × 105 conidia/mL), both with and without wounding. Another three control leaves were inoculated with sterile distilled water, both with and without wounding. The inoculated leaves were wrapped in a plastic bag for 48 hours under conditions of 100% relative humidity. Spot symptoms were observed on both wounded and non-wounded leaves 21 days after inoculation. No symptoms were observed in the control on either of the wounded leaves. Pathogenicity tests were performed three times. The pathogen was re-isolated from the lesion after treatment, and its identity was confirmed using the five genes and morphological characteristics. This confirms the fulfillment of Koch's postulates. C. fioriniae (Liu et al, 2022) and C. siamens (Liu et al, 2022; Khoo et al, 2023) have been reported as the causal pathogen of anthracnose in C. camphora, but C. gloeosporioides has not been reported as a pathogen in C. camphora. To our knowledge, this is the first report of anthracnose caused by C. gloeosporioides on C. camphora in Korea. This study will provide symptomatic, mycological, and molecular biological information for the early detection of anthracnose disease in C. camphora plants.
Cinnamomum camphora (Lauraceae), commonly known as camphor tree, is widely grown as an ornamental and is used as a source of camphor in Malaysia. In June 2021, leaves of three camphor trees with anthracnose symptoms were collected from a park (6°02'00.8"N, 116°07'18.5"E) at the Universiti Malaysia Sabah in Sabah province. The average disease severity across diseased plants was about 60% with 30% incidence on 10 surveyed plants. The disease severity on disease area of 10 leaves from each three diseased plants was estimated using ImageJ software. The disease incidence was determined based on Sharma et al. (2017). Gray spots were observed primarily on the surface of the leaves. After a week, the spots coalesced into larger patches, and anthracnose developed. Small pieces (5 x 5 mm) of symptomatic leaf tissue from three camphor trees were excised from the margin between healthy and symptomatic tissue. The pieces were surface-sterilized with 75% ethanol for 1 minute, washed with 2% sodium hypochlorite solution for 1 minute, rinsed, and air dried before plating in three Petri dishes with Potato dextrose agar, and incubated for 7 days at 25°C in the dark. After 7 days, all the PDA plates had abundant gray-white fluffy hyphae. Mycelium was dark brown when observed from the underside of the plate. The isolates UMS02, UMS04 and UMS05 were characterized morphologically and molecularly. The conidia were one-celled, cylindrical, hyaline, and smooth, with blunt ends, and ranged in size from 13.9 to 16.3 x 3.8 to 6.1 μm (n = 20). Appressoria were round to irregular in shape and dark brown in color, with size ranging from 7.8 to 9.8 μm x 5.3 to 6.8 μm (n= 20). Genomic DNA was extracted from fresh mycelium of the isolates based on Khoo et al. (2022a). Amplification of the internal transcribed spacer (ITS) region, calmodulin (CAL), actin (ACT), chitin synthase (CHS-1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes of the isolate was performed using primer pairs ITS1/ITS4, CL1C/CL2C, ACT-512F/ACT-783R, CHS-79F/CHS-354R, and GDF1/GDR1 (Weir et al. 2012). PCR products with positive amplicons were sent to Apical Scientific Sdn. Bhd. for sequencing. Sequences of the isolates were deposited in GenBank as OK448747, OM501094, OM501095 (ITS), OL953034, OM513908, OM513909 (CAL), OL953031, OM513910, OM513911 (ACT), OL953037, OM513912, OM513913 (CHS-1), and OL953040, OM513914, OM513915 (GAPDH). They were 100% identical to ITS (MN296082), CAL (MN525840), ACT (MW341257, MN525819), CHS-1 (MT210318), and GAPDH (MT682399, MN525882) sequences of Colletotrichum siamense. Phylogenetic analysis using maximum likelihood on the concatenated ITS, CAL, ACT, CHS-1 and GAPDH sequences indicated that the isolates formed a clade (82% bootstrap support) to C. siamense. Morphological and molecular characterization matched the description of C. siamense (Huang et al. 2022). Koch's postulates were performed by spraying a spore suspension (106 spores/ml) on leaves of three healthy two-month-old camphor trees, while water was sprayed on three additional camphor trees which served as control. The inoculated camphor trees were covered with plastics for 48 h at 25°C in the dark, and then placed in the greenhouse. Monitoring and incubation were performed based on Chai et al. (2017) and Iftikhar et al. (2022). Symptoms similar to those observed in the field occurred 8 days post-inoculation. No symptoms occurred on controls. The experiment was repeated two more times. C. siamense has been reported causing anthracnose on camphor tree in China (Liu et al. 2022), Citrus spp. in Mexico (Pérez-Mora et al. 2021), and Crinum asiaticum and eggplant in Malaysia (Khoo et al. 2022b, 2022c). To our knowledge, this is the first report of C. siamense causing anthracnose on C. camphora in Malaysia. Our findings expand the geographic range of C. siamense and indicate it could be a potential threat limiting the camphor production of C. camphora in Malaysia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.