Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Fire blight is one of the destructive plant diseases caused by Erwinia amylovora and causes enormous economic losses worldwide. Fire blight was initially reported in apples, pears, and Chinese quince (Park et al. 2016; Myung et al. 2016a, 2016b) in Korea, but recent studies have reported new hosts such as apricot (Lee et al. 2021) and mountain ash (Lim et al, 2023). These reports indicate that fire blight is likely to disperse to new hosts in Korea. During the nationwide survey in June 2021, we observed typical symptoms of blossom blight and shoot blight on a Chinese hawthorn (Crataegus pinnatifida Bunge) just near an orchard (37°09'21.7"N, 127°35'02.6"E) in Icheon, Gyeonggi Province, where fire blight of Asian pear occurred. For identifying its causal agent, bacterial isolates were recovered after incubating at 28 ℃ for 24 hours on tryptic soy agar (TSA) medium (BD Difco, USA) from blighted leaves and shoots that were surface sterilized with 70% alcohol for 30 sec and homogenized in 500 µl of 10mM MgCl2. Pure cultures of white to mucoid colonies were grown on mannitol glutamate yeast extract (MGY) medium, a semi-selective medium for E. amylovora (Shrestha et al, 2003). Two isolates produced 1.5 kb amplicon through colony PCR using amsB primers (Bereswill et al. 1995). Two strains (CPFB26 and CPFB27) from the Chinese hawthorn produced amplicons identical to that from the TS3128 strain of E. amylovora, isolated from the pear tree and identified in 2016 (Park et al. 2016). For the partial 16s rRNA sequences, the total DNA of these two strains was extracted using the Wizard DNA prep kit (Promega, USA), and PCR was performed using fD1 (5’-AGAGTTTGATCCTGGCTCAG-3’) and Rp2 (5’-ACGGCTACCTTGTTACGACTT-3’) primer sets and further sequenced (Weisburg et al. 1991). These sequences belonged to the E. amylovora clade and were identified as E. amylovora in phylogenetic analysis (GenBank accession no. OP753569 and OP753570). Based on BLASTN analysis, CPFB26 and CPFB27 showed 99.78% similarity to the sequences of the E. amylovora strains TS3128, CFBP 1430, and ATCC 49946. To confirm pathogenicity of the isolates, 10 ㎕ bacterial suspensions (1.5 ⅹ 108 CFU/ml) was injected through the veins of the upper 2nd leaf of 3-month-old clone of apple rootstock (Malus domestica cv. M29) and incubated for six days at 28 ℃ in a chamber with 12 hours of light per day. Petioles and stems turned red hue, and the shoots finally blighted. To complete Koch’s postulates, colonies were recovered on TSA medium from the inoculated apple rootstocks and verified through colony PCR for the amsB and A/B primer set (Powney et al. 2011). Hawthorn has been reported as an epidemiologically important alternate host plant of fire blight (van der Zwet et al. 2012). This study is the first to report fire blight caused by E. amylovora in Chinese hawthorn in Korea. Because Chinese hawthorn is natively distributed in Korea and is widely used as a landscaping tree (Jang et al. 2006), the findings of this study suggest that early monitoring could prevent the spread of fire blight through natural hosts.
Fire blight is one of the destructive plant diseases caused by Erwinia amylovora and causes enormous economic losses worldwide. Fire blight was initially reported in apples, pears, and Chinese quince (Park et al. 2016; Myung et al. 2016a, 2016b) in Korea, but recent studies have reported new hosts such as apricot (Lee et al. 2021) and mountain ash (Lim et al, 2023). These reports indicate that fire blight is likely to disperse to new hosts in Korea. During the nationwide survey in June 2021, we observed typical symptoms of blossom blight and shoot blight on a Chinese hawthorn (Crataegus pinnatifida Bunge) just near an orchard (37°09'21.7"N, 127°35'02.6"E) in Icheon, Gyeonggi Province, where fire blight of Asian pear occurred. For identifying its causal agent, bacterial isolates were recovered after incubating at 28 ℃ for 24 hours on tryptic soy agar (TSA) medium (BD Difco, USA) from blighted leaves and shoots that were surface sterilized with 70% alcohol for 30 sec and homogenized in 500 µl of 10mM MgCl2. Pure cultures of white to mucoid colonies were grown on mannitol glutamate yeast extract (MGY) medium, a semi-selective medium for E. amylovora (Shrestha et al, 2003). Two isolates produced 1.5 kb amplicon through colony PCR using amsB primers (Bereswill et al. 1995). Two strains (CPFB26 and CPFB27) from the Chinese hawthorn produced amplicons identical to that from the TS3128 strain of E. amylovora, isolated from the pear tree and identified in 2016 (Park et al. 2016). For the partial 16s rRNA sequences, the total DNA of these two strains was extracted using the Wizard DNA prep kit (Promega, USA), and PCR was performed using fD1 (5’-AGAGTTTGATCCTGGCTCAG-3’) and Rp2 (5’-ACGGCTACCTTGTTACGACTT-3’) primer sets and further sequenced (Weisburg et al. 1991). These sequences belonged to the E. amylovora clade and were identified as E. amylovora in phylogenetic analysis (GenBank accession no. OP753569 and OP753570). Based on BLASTN analysis, CPFB26 and CPFB27 showed 99.78% similarity to the sequences of the E. amylovora strains TS3128, CFBP 1430, and ATCC 49946. To confirm pathogenicity of the isolates, 10 ㎕ bacterial suspensions (1.5 ⅹ 108 CFU/ml) was injected through the veins of the upper 2nd leaf of 3-month-old clone of apple rootstock (Malus domestica cv. M29) and incubated for six days at 28 ℃ in a chamber with 12 hours of light per day. Petioles and stems turned red hue, and the shoots finally blighted. To complete Koch’s postulates, colonies were recovered on TSA medium from the inoculated apple rootstocks and verified through colony PCR for the amsB and A/B primer set (Powney et al. 2011). Hawthorn has been reported as an epidemiologically important alternate host plant of fire blight (van der Zwet et al. 2012). This study is the first to report fire blight caused by E. amylovora in Chinese hawthorn in Korea. Because Chinese hawthorn is natively distributed in Korea and is widely used as a landscaping tree (Jang et al. 2006), the findings of this study suggest that early monitoring could prevent the spread of fire blight through natural hosts.
In this study, we aimed to screen potential antagonistic microorganisms against Erwinia amylovora, the causal agent of fire blight. From 127 unknown bacterial isolates tested, 2 bacterial strains (BCA3 and BCA19) were identified to show distinct antagonistic activity against E. amylovora in agar plate assay. Phylogenetic analysis of the 16s rRNA sequence identified both BCA3 and BCA19 as Pantoea ananatis. Among these BCA19 showed 13.9% stronger antagonistic activity than BCA3. Thus we further characterized antagonistic activity of BCA19. Culture filtrates (CF) of BCA19 significantly inhibited the swimming and swarming motility of E. amylovora. Ethyl acetate and n-butanol extracts of CF of BCA19 exhibited antibacterial activity in disk diffusion assay. Furthermore, gas chromatography–mass spectrometry analysis of ethyl acetate and n-butanol extracts of CF of BCA19 identified antibacterial compounds, including indole and hexahydropyrrolo[1,2-a]pyrazine-1,4-dione. Importantly, indole inhibited growth of E. amylovora with IC50 value of 0.109 ± 0.02 mg/mL (~930.4 μM). Whole genome sequence analysis of BCA 19 revealed gene clusters related with siderphore, andrimid, arylpolyene and carotenoid-type terpene production. This study indicates that BCA19 can be used as a potential biological control agent against Erwinia amylovora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.