Background
Spontaneous miscarriage, a leading health concern globally, often occurs due to various factors, including infections. Among these, Coxiella burnetii and Brucella spp. may have adverse effects on pregnancy outcomes. While previous research has established a link between infections and spontaneous miscarriage, our study aimed specifically to investigate the presence of these two pathogens in abortion samples from women who experienced spontaneous miscarriages in Iran. Our study can add to the existing knowledge by focusing on Iran, a region with a high prevalence of C. burnetii and Brucella spp. As a result, it could provide a better understanding and unique insights into the relationship of these pathogens with spontaneous miscarriages in endemic regions.
Methods
From March 2021 to March 2022, a total of 728 abortion samples (including placenta and cotyledon) were collected from 409 women who had experienced spontaneous miscarriages in the provinces of Tehran, Fars, and West Azerbaijan in Iran. The specimens included 467 Formalin-Fixed Paraffin-Embedded (FFPE) and 261 fresh frozen samples. After DNA extraction from abortion samples, the quantitative real-time PCR (qPCR) assay targeted a specific fragment of the IS1111 and IS711 elements for molecular identification of C. burnetii and Brucella spp., respectively. Furthermore, the qPCR assay employing specific primers for different species was used to determine the species of Brucella.
Results
Among the studied women, 1 out of 409 (0.24%) samples tested positive for Brucella spp., specifically Brucella melitensis. There were no positive specimens for C. burnetii.
Conclusions
Our study contributes to understanding the potential involvement of Brucella species in spontaneous infectious abortion within endemic regions. The identification of B. melitensis in this study highlights the need for further research in this area. However, while our results suggest a relatively low or zero identification of these pathogens in our sample population, this does not rule out the possibility of undetected infections. Therefore, it is critical to acknowledge the limitations of the molecular techniques used (qPCR), which may have potential limitations such as sensitivity and specificity. Moreover, because 64.15% of our samples were FFPE, the sensitivity of the qPCR test may be reduced. These raise concerns about the accuracy of the reported prevalence rates and the potential for false positives or negatives.