We report on speckle observations of binary stars carried out at the WIYN Telescope over the period from 2010 September through 2012 February, providing relative astrometry for 2521 observations of 883 objects, 856 of which are double stars and 27 of which are triples. The separations measured span a range of 0.01-1.75 arcsec. Wavelengths of 562, 692, and 880 nm were used, and differential photometry at one or more of these wavelengths is presented in most cases. 66 components were resolved for the first time. We also estimate detection limits at 0.2 and 1.0 arcsec for high-quality observations in cases where no companion was seen, a total of 176 additional objects. Detection limits vary based on observing conditions and signal-to-noise ratio, but are approximately 4 mag at 0.2 arcsec and 6 mag at 1.0 arcsec on average. Analyzing the measurement precision of the data set, we find that the individual separations obtained have linear measurement uncertainties of approximately 2 mas, and photometry is uncertain to approximately 0.1 mag in general. This work provides fundamental, well-calibrated data for future orbit and mass determinations, and we present three first orbits and total mass estimates of nearby K-dwarf systems as examples of this potential.