2016
DOI: 10.1063/1.4966257
|View full text |Cite
|
Sign up to set email alerts
|

First steps towards the realization of a double layer perceptron based on organic memristive devices

Abstract: Memristors are widely considered as promising elements for the efficient implementation of synaptic weights in artificial neural networks (ANNs) since they are resistors that keep memory of their previous conductive state. Whereas demonstrations of simple neural networks (e.g., a single-layer perceptron) based on memristors already exist, the implementation of more complicated networks is more challenging and has yet to be reported. In this study, we demonstrate linearly nonseparable combinational logic classi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
60
0
8

Year Published

2017
2017
2024
2024

Publication Types

Select...
7
2

Relationship

1
8

Authors

Journals

citations
Cited by 98 publications
(68 citation statements)
references
References 26 publications
0
60
0
8
Order By: Relevance
“…If we are thinking about the system with learning properties [42], it can be not enough we must register the variation of the connections between all elements of the network. In the case of a double-layer perceptron, for example, it required a realization of rather complicated external electronic circuit, providing the temporal detachment of individual elements from the network for the registering of its conductivity [46]. Instead, the application of the spectroscopic technique allows monitoring of the conductivity state of all elements of the network in a real time for rather large area (up to half a meter), what will simplify, for example, the application of back propagation learning algorithms.…”
Section: Functionalizing Plantsmentioning
confidence: 99%
“…If we are thinking about the system with learning properties [42], it can be not enough we must register the variation of the connections between all elements of the network. In the case of a double-layer perceptron, for example, it required a realization of rather complicated external electronic circuit, providing the temporal detachment of individual elements from the network for the registering of its conductivity [46]. Instead, the application of the spectroscopic technique allows monitoring of the conductivity state of all elements of the network in a real time for rather large area (up to half a meter), what will simplify, for example, the application of back propagation learning algorithms.…”
Section: Functionalizing Plantsmentioning
confidence: 99%
“…The actual output value of the neural network is denoted by y j and the ideal tag value is denoted by t j , and we can use the mean square error as an error function Figure 13. Logic scheme of the implemented neural network with two inputs, two hidden and one output neurons [24].…”
Section: Mnn Algorithmmentioning
confidence: 99%
“…The artificial neuron body (soma) was implemented in the circuit by an op-amp based differential adder and a voltage divider with a MOSFET controlled by the output of the summator [24]. This element executed the basic neuron functions in terms of information processing-summation and threshold.…”
Section: Mnn Circuitsmentioning
confidence: 99%
“…10.46095.17099 Мемристор -элемент электрической цепи, способный изменять свое сопротивление в зависимости от величины электрического поля и протекшего заряда [1]. Интерес к изучению мемристоров обусловлен перспективами их применения для создания энергонезависимой памяти с произвольным доступом (RRAM), обладающей низким энергопотреб-лением при записи информации (∼ 10 −16 J/bit) [2,3], и нейроморфных систем [4][5][6]. При этом возможность задавать различные промежуточ-ные состояния мемристора является необходимым условием для его ис-пользования в качестве аналога синапса в нейроморфных приложениях (распознавание образов и естественного языка, способности к обуче-нию, обобщениям и пр.).…”
Section: поступило в редакцию 30 октября 2017 гunclassified