Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The hydraulic fracturing technology is widely applied in tight reservoirs, including shale reservoirs, as one of the established reservoir stimulation methodologies to enhance the productivity. Even though the hydraulic fracturing is currently a common technique, there are remaining challenges in offshore fields with the high degree of geological and geomechanical uncertainties. In offshore hydraulic fracturing operations, key issues are the limited deck space for the required equipment on-board and economical aspects of the surface equipment including stimulation vessels due to the limited number of dedicated offshore stimulation vessels in the world. In addition, the limited reservoir information brings uncertainties in the hydraulic fracture design and causes difficulties in finalizing the operation plans from the timing and logistics point of view.This paper contains the first part of the two successive parts of a case study will be shown on successful optimization and productivity enhancement of actual offshore hydraulic fracturing for a deep tight gas reservoir with considerably limited formation data and under a high-pressure and high-temperature (HP/HT) environment. This successful operation was recognized as a landmark in this region, in terms of the first hydraulic fracturing operation in the offshore Abu Dhabi.In this paper (part 1), we describe how the flexible hydraulic fracture design led to an efficient productivity enhancement. The hydraulic fracture design was optimized by the integrated data acquisition strategy and the successive flexible adjustment from the design stage at office to the actual main treatment at wellsite. The relevant fracture design components like proppant usage and size can be optimized, based on sensitivity studies assuming not only all possible geological and geomechanical circumstances but also the actual pre-frac well test and data-frac results. In part 2, the key factors will be highlighted on this successful hydraulic fracturing result against the difficulties from operational point of view (Al Ameri et al. 2014).The work flow and successful strategy in our hydraulic fracturing design and execution can be applied to other offshore tight-sand gas reservoirs including those under HP/HT condition. The optimized design of hydraulic fracturing provides an effective operation and enables more economical field development for the tight reservoirs.
The hydraulic fracturing technology is widely applied in tight reservoirs, including shale reservoirs, as one of the established reservoir stimulation methodologies to enhance the productivity. Even though the hydraulic fracturing is currently a common technique, there are remaining challenges in offshore fields with the high degree of geological and geomechanical uncertainties. In offshore hydraulic fracturing operations, key issues are the limited deck space for the required equipment on-board and economical aspects of the surface equipment including stimulation vessels due to the limited number of dedicated offshore stimulation vessels in the world. In addition, the limited reservoir information brings uncertainties in the hydraulic fracture design and causes difficulties in finalizing the operation plans from the timing and logistics point of view.This paper contains the first part of the two successive parts of a case study will be shown on successful optimization and productivity enhancement of actual offshore hydraulic fracturing for a deep tight gas reservoir with considerably limited formation data and under a high-pressure and high-temperature (HP/HT) environment. This successful operation was recognized as a landmark in this region, in terms of the first hydraulic fracturing operation in the offshore Abu Dhabi.In this paper (part 1), we describe how the flexible hydraulic fracture design led to an efficient productivity enhancement. The hydraulic fracture design was optimized by the integrated data acquisition strategy and the successive flexible adjustment from the design stage at office to the actual main treatment at wellsite. The relevant fracture design components like proppant usage and size can be optimized, based on sensitivity studies assuming not only all possible geological and geomechanical circumstances but also the actual pre-frac well test and data-frac results. In part 2, the key factors will be highlighted on this successful hydraulic fracturing result against the difficulties from operational point of view (Al Ameri et al. 2014).The work flow and successful strategy in our hydraulic fracturing design and execution can be applied to other offshore tight-sand gas reservoirs including those under HP/HT condition. The optimized design of hydraulic fracturing provides an effective operation and enables more economical field development for the tight reservoirs.
New and extreme challenges, from engineering and operational standpoints, were faced during the preparation and execution of an exploration well in an HPHT environment. COVID-19 pandemic outbreak made it even more challenging leading to several issues in terms of material deliverability and personnel availability. The nature of the reservoir required hydraulic fracturing to be performed prior to test the explorative target. The entire fracturing treatment and well testing were performed through an instrumented well testing string which allowed to save rig time and, thus, costs. This paper goes through the selection of proper completion and hydraulic fracturing technologies to withstand the challenges that such environment poses to deliver the job safely and timely. The completion hardware selected to perform the job was a well test/frac string equipped with sensors, tester valve and circulating valve. A mechanical set down weight non-rotating packer isolated the reservoir from the annulus, a standard completion safety valve and a tubing hanger with X-Mas Tree completed the configuration of the DST string. Another important aspect was the need of heavy brine (i.e. bromide based) which exposed the equipment and material to aggressive environment. Hydraulic fracturing operations were carried out smoothly with the support of a dedicated frac vessel reaching up to 10,000 psi at wellhead and more than 12,000 psi at bottomhole. The total amount of proppant pumped into formation was one of the highest in the Operator experience and good results were achieved in unknown formations. The result of the stimulation job was a good values of proppant concentration in the fracture as long as a good frac width. During well testing operations high drawdown was reached without compromising the integrity of the string. This paper outlines and describes the completion and fracturing job engineering, preparation and execution phases including all the mitigation actions and lessons learned gathered during operations. Moreover, this experience showed how a resilient culture and an integrated approach between subsidiary operations and headquarter technical support, lead to successful operative results.
Hydraulic fracturing has been an industry standard for the past decades; however, most recent applications are performed in extreme down-hole conditions: complex stresses regime, extended reach sections, abnormal pressure and temperature gradients proved to be strenuous challenges, especially with limited time and budgets. This paper explores the challenges of designing, completing and fracturing High Temperature (HT) tight reservoirs. A novel approach to the problem was mandatory to account for thermal effects on stress regime to increase overall chances of success of stimulation treatments. This multi-disciplinary method interconnects petro-physics, rock mechanics, fluid dynamics and operations by combining data from literature and from the field with the purpose of providing a tailored solution to the new challenges ahead. Hydraulic fracturing in High Temperature reservoirs is indeed a demanding task, for which specialized products have been developed throughout time, such as for example, HT fracturing fluids. However, despite accounting for HT gradients, sometimes the outcomes of hydraulic fracturing activity were surprising or inexplicable; sometimes, even disappointing. Therefore, "post-mortem" reviews are often a must-do: data coming from the field and post-treatments results are analysed from scratch, wiping out any known-fact about the specific well and revising all the possible root causes for the anomalous behaviours. Petro-physical data, tectonic regime, stresses, hydraulic fracturing geometry and diagnostics were entirely accounted for to provide an explanation of the final well results, ultimately resulting in more questions than answers, as it so often happens with science. In drilling operations, the thermal effect of cold fluids on fracture gradients and its influence on losses has been deeply investigated, becoming an industry best practice. However, the effect of cool-down due to fluid injection at high rates with hydraulic fracturing applications are not captured by dedicated literature and, even less, by modelling softwares. As a result, a non-conventional approach to the creation of a geo-mechanical model that could take into account the thermal effect of cold frac fluids injection was elaborated and several sensitivities to understand fracture propagation mechanism were performed, highlighting a wide range of variability which is attributable to the influence of temperature on stress regime. High temperature reservoirs proved easier to frac than expected due to the decrease in terms of pressure required to initialize a fracture. However, this phenomenon could hide potential dangers when it is required to contain such fracture in the targeted interval. The correct modelling of such effect is of extreme importance to forecast fracture geometry, proppant placement and final conductivity requiring to re-adapt and re-adjust field-proven, industry-standardized hydraulic fracturing models and practices to match results with expectations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.