This Perspective article illustrates the key role of thiazole and triazole in the work carried out in the author's laboratory over three decades and deals with the synthesis of carbohydrate-based bioactive molecules. The first part reports on the development of synthetic strategies exploiting the use of various thiazole-based reagents and the ready conversion of thiazole into the formyl group. After describing the chain elongation of monosaccharides into higher-carbon homologues, the synthesis of target natural and non-natural carbohydrates, or their ultimate precursors, is presented. These include some sphingoids, neuraminic and destomic acids, lincosamine, various 3-deoxy-2-ulosonic acids (KDO, KDN, iso-Neu4Ac), iminosugars (nojirimycin, mannojirimycin, galactostatin) and homoazasugars. Also prepared were the disaccharide subunit of bleomycin A(2) and the side-chain of taxol and taxotere.((R)) The use of 1,2,3-triazole is discussed in the second part of the paper. The service of this heterocycle that is easily formed by the Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) is considered in light of its use as a robust linker (a sort of keystone) of complex and diverse molecular architectures. Thus, the assembly of triazole-linked glycosyl amino acids, non-natural nucleotides, 1,6-oligomannosides, sialoside clusters on calixarene platfom via CuAAC is described and the biological relevance of these compounds is discussed in brief.