A B S T R A C TAlthough the aetiology of Williams syndrome (WS) is related to elastin gene disruption, its pathogenesis remains unknown, particularly that of vascular lesions. The aim of the present study was to compare the elastic properties of three WS patients with age-and gender-matched normotensive and hypertensive controls. Common carotid arteries of WS patients had a higher distensibility, a thicker intima-media and a lower elastic modulus. Electron microscopy studies of one WS renal artery showed major abnormalities of the elastic fibres, which displayed a reticular structure and a thickening of the internal elastic lamina, whereas the ultrastructure of elastic fibres was normal in a control subadventitial muscular fibrodysplasia. In this WS arterial stenosis, we studied the expression patterns of several major smooth muscle (SM) phenotypic markers using immunofluorescence and used a normal renal artery as a control. In WS, SM-α-actin-and myosin-heavy-chain-positive cells contained low amounts of heavy caldesmon, and laminin-β1 chain was expressed into the basement membranes, indicating a less differentiated phenotype. In conclusion, in WS patients, the carotid artery wall was abnormally distensible and thick, and major ultrastructural abnormalities of elastic fibres were observed in association with smooth muscle cell de-differentiation. These results indicate that the haplo-insufficiency of the elastin gene in WS patients leads to abnormal elastic fibre assembly within the media. Arterial wall hypertrophy found with a primary defect in elastin may represent a major factor responsible for increased distensibility. We suggest that, in WS, the increased proliferative response and the associated de-differentiation process represent two important mechanisms underlying the matrix accumulation and the development of arterial stenosis."These authors contributed equally to this study.