Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: Cardiometabolic diseases pose a significant threat to global public health, with a substantial majority of cardiovascular disease mortality (more than three-quarters) occurring in low- and middle-income countries. There have been remarkable advances in recent years in identifying genetic variants that alter disease susceptibility by interacting with dietary factors. Despite the remarkable progress, several factors need to be considered before the translation of nutrigenetics insights to personalised and precision nutrition in ethnically diverse populations. Some of these factors include variations in genetic predispositions, cultural and lifestyle factors as well as socioeconomic factors. Summary: This review aims to explore the factors that need to be considered in bridging the gap between existing nutrigenetics insights and the implementation of personalised and precision nutrition across diverse ethnicities. Several factors might influence variations among individuals with regards to dietary exposures and metabolic responses and these include genetic diversity, cultural and lifestyle factors as well as socioeconomic factors. A multi-omics approach involving disciplines such as metabolomics, epigenetics and the gut microbiome might contribute to improved understanding of the underlying mechanisms of gene-diet interactions and the implementation of precision nutrition although more research is needed to confirm the practicality and effectiveness of this approach. Conducting gene-diet interaction studies in diverse populations is essential and studies utilising large sample sizes are required as this improves the power to detect interactions with minimal effect sizes. Future studies should focus on replicating initial findings to enhance reliability and promote comparison across studies. Once findings have been replicated in independent samples, dietary intervention studies will be required to further strengthen the evidence and facilitate their application in clinical practice. Key Messages: Nutrigenetics has a potential role to play in the prevention and management of cardiometabolic diseases. Conducting gene-diet interaction studies in diverse populations is essential giving the genetic diversity and variations in dietary patterns. Integrating data from disciplines such as metabolomics, epigenetics and the gut microbiome could help in early identification of individuals at risk of cardiometabolic diseases as well as the implementation of precise dietary interventions for preventing and managing cardiometabolic diseases.
Background: Cardiometabolic diseases pose a significant threat to global public health, with a substantial majority of cardiovascular disease mortality (more than three-quarters) occurring in low- and middle-income countries. There have been remarkable advances in recent years in identifying genetic variants that alter disease susceptibility by interacting with dietary factors. Despite the remarkable progress, several factors need to be considered before the translation of nutrigenetics insights to personalised and precision nutrition in ethnically diverse populations. Some of these factors include variations in genetic predispositions, cultural and lifestyle factors as well as socioeconomic factors. Summary: This review aims to explore the factors that need to be considered in bridging the gap between existing nutrigenetics insights and the implementation of personalised and precision nutrition across diverse ethnicities. Several factors might influence variations among individuals with regards to dietary exposures and metabolic responses and these include genetic diversity, cultural and lifestyle factors as well as socioeconomic factors. A multi-omics approach involving disciplines such as metabolomics, epigenetics and the gut microbiome might contribute to improved understanding of the underlying mechanisms of gene-diet interactions and the implementation of precision nutrition although more research is needed to confirm the practicality and effectiveness of this approach. Conducting gene-diet interaction studies in diverse populations is essential and studies utilising large sample sizes are required as this improves the power to detect interactions with minimal effect sizes. Future studies should focus on replicating initial findings to enhance reliability and promote comparison across studies. Once findings have been replicated in independent samples, dietary intervention studies will be required to further strengthen the evidence and facilitate their application in clinical practice. Key Messages: Nutrigenetics has a potential role to play in the prevention and management of cardiometabolic diseases. Conducting gene-diet interaction studies in diverse populations is essential giving the genetic diversity and variations in dietary patterns. Integrating data from disciplines such as metabolomics, epigenetics and the gut microbiome could help in early identification of individuals at risk of cardiometabolic diseases as well as the implementation of precise dietary interventions for preventing and managing cardiometabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.