Abstract:We consider the Fisher–KPP equation with advection: ut=uxx−βux+f(u) on the half‐line x∈(0,∞), with no‐flux boundary condition ux−βu = 0 at x = 0. We study the influence of the advection coefficient −β on the long time behavior of the solutions. We show that for any compactly supported, nonnegative initial data, (i) when β∈(0,c0), the solution converges locally uniformly to a strictly increasing positive stationary solution, (ii) when β∈[c0,∞), the solution converges locally uniformly to 0, here c0 is the minim… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.