Catch and effort data were analyzed to estimate the maximum sustainable yield (MSY) of King Soldier Bream, Argyrops spinifer (Forsskål, 1775, Family: Sparidae), and to evaluate the present status of the fi sh stocks exploited in Pakistani waters. The catch and effort data for the 25-years period 1985-2009 were analyzed using two computer software packages, CEDA (catch and effort data analysis) and ASPIC (a surplus production model incorporating covariates). The maximum catch of 3 458 t was observed in 1988 and the minimum catch of 1 324 t in 2005, while the average annual catch of A . spinifer over the 25 years was 2 500 t. The surplus production models of Fox, Schaefer, and Pella Tomlinson under three error assumptions of normal, log-normal and gamma are in the CEDA package and the two surplus models of Fox and logistic are in the ASPIC package. In CEDA, the MSY was estimated by applying the initial proportion (IP) of 0.8, because the starting catch was approximately 80% of the maximum catch. Except for gamma, because gamma showed maximization failures, the estimated results of MSY using CEDA with the Fox surplus production model and two error assumptions, were 1 692.08 t ( R 2 =0.572) and 1 694.09 t ( R 2 =0.606), respectively, and from the Schaefer and the Pella Tomlinson models with two error assumptions were 2 390.95 t ( R 2 =0.563), and 2 380.06 t ( R 2 =0.605), respectively. The MSY estimated by the Fox model was conservatively compared to the Schaefer and Pella Tomlinson models. The MSY values from Schaefer and Pella Tomlinson models were the same. The computed values of MSY using the ASPIC computer software program with the two surplus production models of Fox and logistic were 1 498 t ( R 2 =0.917), and 2 488 t ( R 2 =0.897) respectively. The estimated values of MSY using CEDA were about 1 700-2 400 t and the values from ASPIC were 1 500-2 500 t. The estimates output by the CEDA and the ASPIC packages indicate that the stock is overfi shed, and needs some effective management to reduce the fi shing effort of the species in Pakistani waters.