The flux pinning mechanism of BaFe1.9Ni0.1As2 superconducting crystals have been investigated systematically by magnetic measurements up to 13 T at various temperatures. The field dependence of the critical current density, Jc, was analysed within the collective pinning model. A remarkably good agreement between the experimental results and theoretical δl pinning curve is obtained, which indicates that pinning in BaFe1.9Ni0.1As2 crystal originates from spatial variation of the mean free path. Moreover, the normalized pinning force density, Fp, curves versus h = B/Birr (Birr is the irreversibility field) were scaled using the Dew-Hughes model. Analysis suggests that point pinning alone cannot explain the observed field variation of Fp.