2022
DOI: 10.1007/s11222-022-10122-1
|View full text |Cite
|
Sign up to set email alerts
|

Fitting double hierarchical models with the integrated nested Laplace approximation

Abstract: Double hierarchical generalized linear models (DHGLM) are a family of models that are flexible enough as to model hierarchically the mean and scale parameters. In a Bayesian framework, fitting highly parameterized hierarchical models is challenging when this problem is addressed using typical Markov chain Monte Carlo (MCMC) methods due to the potential high correlation between different parameters and effects in the model. The integrated nested Laplace approximation (INLA) could be considered instead to avoid … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?