Liquid-crystalline derivatives of poly(propylene imine)dendrimers of the 0th, 1st and 2nd generations, complexed with copper(II) ions, were studied by EPR spectroscopy. The structures of copper (II) complexes with different Cu(II) loadings x per dendrimer ligand L (x = Cu/L) were determined. At the lowest concentration, the Cu(II) ions form monomeric complexes with approximately square-planar N2O2 coordination of both carbonyl oxygen and amido nitrogen atoms. At higher copper content, two kinds of Cu(II) complex sites with different geometries exist. The orienting effect of a high magnetic field was used to investigate the structure and magnetic properties of the copper(II) complexes. This effect, for the first time in dendrimers, allowed the resolution of five nitrogen super-hyperfine lines on g(z) components with the unusual coupling constant of a(Nz)= 35.9 x 10(-4) cm(-1). The combination of the magnetic parameters and the orienting effect indicates the presence of a monomeric complex with pseudotetrahedral N2O2 coordination of the Cu(II) ion, as well as a "dimer" structure with fivefold coordination, presumably due to an N3O2 environment. Higher copper loadings lead to increased exchange coupling between the complex sites.