Metal nanoclusters have recently attracted extensive interest not only for fundamental scientific research, but also for practical applications. For fundamental scientific research, it is of major importance to explore the internal structure and crystallographic arrangement. Herein, we synthesize a gold nanocluster whose composition is determined to be Au60S6(SCH2Ph)36 by using electrospray ionization mass spectrometry and single crystal X-ray crystallography (SCXC). SCXC also reveals that Au60S6(SCH2Ph)36 consists of a fcc-like Au20 kernel protected by a pair of giant Au20S3(SCH2Ph)18 staple motifs, which contain 6 tetrahedral-coordinate μ4-S atoms not previously reported in the Au–S interface. Importantly, the fourth crystallographic closest-packed pattern, termed 6H left-handed helical (6HLH) arrangement, which results in the distinct loss of solid photoluminescence of amorphous Au60S6(SCH2Ph)36, is found in the crystals of Au60S6(SCH2Ph)36. The solvent-polarity-dependent solution photoluminescence is also demonstrated. Overall, this work provides important insights about the structure, Au–S bonding and solid photoluminescence of gold nanoclusters.