We consider the problem of detecting a general sparse mixture and obtain an explicit characterization of the phase transition under some conditions, generalizing the univariate results of Cai and Wu. Additionally, we provide a sufficient condition for the adaptive optimality of a Higher Criticism type testing statistic formulated by Gao and Ma. In the course of establishing these results, we offer a unified perspective through the large deviations theory. The phase transition and adaptive optimality we establish are direct consequences of the large deviation principle of the normalized log-likelihood ratios between the null and the signal distributions.