Objective
This study aims to assess a machine learning (ML) algorithm using multimodal imaging to accurately identify risk factors for uveal melanoma (UM) and aid in the diagnosis of melanocytic choroidal tumors.
Subjects and Methods
This study included 223 eyes from 221 patients with melanocytic choroidal lesions seen at the eye clinic of the University of Illinois at Chicago between 01/2010 and 07/2022. An ML algorithm was developed and trained on ultra-widefield fundus imaging and B-scan ultrasonography to detect risk factors of malignant transformation of choroidal lesions into UM. The risk factors were verified using all multimodal imaging available from the time of diagnosis. We also explore classification of lesions into UM and choroidal nevi using the ML algorithm.
Results
The ML algorithm assessed features of ultra-widefield fundus imaging and B-scan ultrasonography to determine the presence of the following risk factors for malignant transformation: lesion thickness, subretinal fluid, orange pigment, proximity to optic nerve, ultrasound hollowness, and drusen. The algorithm also provided classification of lesions into UM and choroidal nevi. A total of 115 patients with choroidal nevi and 108 patients with UM were included. The mean lesion thickness for choroidal nevi was 1.6 mm and for UM was 5.9 mm. Eleven ML models were implemented and achieved high accuracy, with an area under the curve of 0.982 for thickness prediction and 0.964 for subretinal fluid prediction. Sensitivity/specificity values ranged from 0.900/0.818 to 1.000/0.727 for different features. The ML algorithm demonstrated high accuracy in identifying risk factors and differentiating lesions based on the analyzed imaging data.
Conclusions
This study provides proof of concept that ML can accurately identify risk factors for malignant transformation in melanocytic choroidal tumors based on a single ultra-widefield fundus image or B-scan ultrasound at the time of initial presentation. By leveraging the efficiency and availability of ML, this study has the potential to provide a non-invasive tool that helps to prevent unnecessary treatment, improve our ability to predict malignant transformation, reduce the risk of metastasis, and potentially save patient lives.