There are a lot of generalizations of the concept of metric space . In this paper we using some fixed point theorems in partial 2-metric spaces and given an examples in it . And We propose the idea of Cyclic (ψ,φ,A,B)-Contraction in partial 2-metric spaces and investigate fixed point theorems for mappings meeting cyclical generalised contractive requirements in full partial 2-metric spaces in this research . The goal of this paper is to present some fixed point theorems for a mapping meeting a cyclical generalised contractive condition in partial 2-metric spaces based on a pair of altering distance functions . We establish that these mappings necessarily have unique fixed points in complete 2-metric spaces . Fixed point theorems for some contractions from this class are introduced and illustrative examples are given . Our results in that paper also generalises an existing result in 2-metric spaces .