This paper introduces two new contractive conditions in the setting of non-Archimedean modular spaces, via a C-class function, an altering distance function, and a control function. A non-Archimedean metric modular is shaped as a parameterized family of classical metrics; therefore, for each value of the parameter, the positivity, the symmetry, the triangle inequality, or the continuity is ensured. The main outcomes provide sufficient conditions for the existence of common fixed points for four mappings. Examples are provided in order to prove the usability of the theoretical approach. Moreover, these examples use a non-Archimedean metric modular, which is not convex, making the study of nonconvex modulars more appealing.