The charge density in a flame contains important information about the combustion processes that is difficult to obtain due to fast, complex, and highly exothermic reactions. This paper presents a study of using electrostatic probes to measure the charge density in methane fired diffusion and premixed flames. The sensing principle, practical design, and performance assessment of the electrostatic probe are presented.Comparative experimental studies with a reference ion-current sensor carried out on a combustion test rig indicate that the fluctuation of the signal from the electrostatic probe arises from the variation in the charge density in a flame. A dimensionless index, combining the average of local peak values in the electrostatic signal with the flame oscillation frequency, is adopted as an indicator of the charge density. Experimental results demonstrate that the charge density in a methane diffusion flame has an increasing trend with the fuel flowrate varying from 0.80 L/min to 1.20 L/min. The charge density in a methane-air premixed flame yields a decreasing trend with the equivalence ratio ranging from 0.54 to 0.75, then increases and reaches a local peak at the equivalence ratio of 1.03, and continues to increase when the equivalence ratio varies from 1.03 to 3.50. The charge density in the inner cone is higher than that in the outer cone for diffusion and premixed flames. The results obtained suggest that the developed electrostatic probe and the index can be used to indicate the charge density in diffusion and premixed flames.