This state‐of‐the‐art review is geared towards elucidating the molecular understanding of the carbon‐based flame‐retardant mechanisms for polymers via holistic characterisation combining detailed analytical assessments and computational material science. The use of carbon‐based flame retardants, which include graphite, graphene, carbon nanotubes (CNTs), carbon dots (CDs) and fullerenes, in their pure and functionalised forms are initially reviewed to evaluate their flame retardancy performance and to determine their elevation of the flammability resistance on various types of polymers. The early transition metal carbides such as MXenes, regarded as next generation carbon‐based flame retardants, are discussed with respect to their superior flame retardancy and multifunctional applications. At the core of this review is the utilisation of cutting‐edge molecular dynamics (MD) simulations which sets a precedence of an alternative bottom‐up approach to fill the knowledge gap through insights into the thermal resisting process of the carbon‐based flame retardants, such as the formation of carbonaceous char and intermediate chemical reactions offered by the unique carbon bonding arrangements and microscopic in‐situ architectures. Combining MD simulations with detailed experimental assessments and characterisation, a more targeted development as well as a systematic material synthesis framework can be realised for the future development of advanced flame‐retardant polymers.This article is protected by copyright. All rights reserved