Edge flames were investigated in a methane/O 2 /N 2 counterflow diffusion flame burner. In a typical experiment, a stable counterflow diffusion flame in an axysymmetric configuration was perturbed by lowering the relevant Damkö hler number slightly below the extinction value, Da ext . As a result, the flame extinguished in the vicinity of the burner axis where conditions were uniform. An edge flame extinction front quickly propagated in the radial direction, turned into an ignition edge flame, and eventually stabilized as a standing triple flame at a radial position larger than the burner radius. This sequence of events resulted from an increase of Da as a function of the radial direction, consequent to a decrease in the strain rate in the radial direction. The edge flame propagation velocity in the ignition mode was measured for propagating edge flames at moderate Da and for standing triple flames at large Da, using a combination of laser Doppler velocimetry of seeded particles, formaldehyde planar laser-induced fluorescence, and natural chemiluminescence imaging. The propagation velocity, nondimensionalized with the premixed laminar flame speed of the unburned stoichiometric mixture, was correlated with Da. The latter was calculated using a thermal diffusive model and velocity measurements. The nondimensional velocity reached a value of 2.6 at large Da, in good agreement with the estimated square root of the ratio of the unburned gas density to the burned gas density, as suggested by scaling considerations.