To acquire better understanding of the early ignition phenomena in 100mm ignition simulator loaded with packed propellant bed, a theoretical model of ignition gas flow through rigid porous media is developed. Three pressure gauges are installed in the lateral side of ignition simulator for chamber pressure measurements after ignition. The pseupropellant loaded in the chamber is similar to the standard 13/19 single-base cylindrical propellant in size. It is composed of rigid ceramic composite with low thermo conductivity. It is assumed that the pseupropellant bed is rigid in contrast to the previous elastic porous media assumption. The calculated pressure values can be verified by the experimental data well at the low loading density of pseupropellant bed of 0.18 g/cm3. However, there is still error between the experimental and calculated results in the early pressure peak position close to the ignition primer when the loading density of pseupropellant bed increases to 0.73 and 1.06g/cm3, due to the change of local permeability of pseupropellant bed at high loading density, which is assumed a constant in the model for the modeling easily. The calculations can enable better understanding of physical processes of ignition gas flow in the ignition simulator loaded with the pseupropellant bed.