In this article, nonlinear forced vibration analysis is carried out for a rotating three-dimensional tapered cantilever beam subjected to a uniformly distributed load. Considering the effects of Coriolis terms, static axial deformation and geometric nonlinearity in modeling process, nonlinear partial motion equations of a rotating tapered Euler–Bernoulli beam are established by using Hamilton’s principle. Galerkin’s procedure is used to discretize the equations to obtain the dynamic response of the beam. Frequency responses, the time-history response, the phase diagram, and the Poincaré map are introduced to study the effects of the taper ratio, rotating velocity, radius of hub, and external excitation on the nonlinear resonances and detailed responses of the rotating three-dimensional tapered beam. Results show that the fundamental natural frequency increases with the increase of the taper ratio, radius of hub, and rotating velocity. Besides, by increasing the taper ratio and excitation amplitude and decreasing the rotating velocity and radius of hub, the nonlinearity and vibration amplitude of the rotating beam intensify.