During the International Geophysical Year (IGY, 1957(IGY, /1958) Dunsink Observatory near Dublin in Ireland was a World Data Centre for Solar Activity. In this circumstance, Hα Lyot Heliograph records secured on a daily basis between 07:00 -14:00 UT at the Cape of Good Hope (then an integral link in a network of similar instruments contributing during the IGY to global monitoring of solar chromospheric activity) were routinely sent to Dunsink for analysis and dissemination. The investigations carried out at Dunsink on these data resulted, inter alia, in the discovery of the Flare Nimbus phenomenon. The nimbus comprises a dark expanding halo seen in the plage regions around major flares at, or within a few minutes of, the time of flare maximum intensity in Hα light. It reaches its greatest extent about 30 minutes after flare maximum. Its maximum dimensions (estimated visually) lie in the range 2 -4 × 10 5 km and its duration ranges from ∼ 1 -2 hours. Within the nimbus the striation pattern is either completely destroyed or loses its pre-flare configuration. An account of this phenomenon and its interpretation appeared primarily, although not exclusively, in the locally produced Dunsink Observatory Publications which are not now easily accessible to the world community of solar researchers. Also, at around the time when the nimbus was first identified and recorded in Lyot Heliograph data at several observatories, techniques in solar physics shifted towards high resolution narrow field observations. Under these conditions no further examples of the nimbus were recorded and the subject has remained dormant over several decades. The present paper again places the scientific results obtained with regard to the nimbus in the public domain, together with an account of the evolution within the scientific community of an explanation of this phenomenon. It is suggested here for the first time, in the light of present day data concerning coronal mass ejections (CMEs) and coronal dimming, that the nimbus provides a signature of CME-related reorganization of the magnetic field in the chromosphere (such that the transverse magnetic field component decreases and transforms into the line of sight component as the vector field stretches out). Coronal dimming provides a complementary signature of CME-related mass depletion in the corona.