In this work, we develop a systematic method of constructing flat-band models with and without band crossings. Our construction scheme utilizes the symmetry and spatial shape of a compact localized state (CLS), and also the singularity of the flat-band wave function obtained by a Fourier transform of the CLS (FT-CLS). In order to construct a flat-band model systematically using these ingredients, we first choose a CLS with a specific symmetry representation in a given lattice. Then, the singularity of FT-CLS indicates whether the resulting flat band exhibits a band crossing point or not. A tight-binding Hamiltonian with the flat band corresponding to the FT-CLS is obtained by introducing a set of basis molecular orbitals, which are orthogonal to the FT-CLS. Our construction scheme can be systematically applied to any lattice so that it provides a powerful theoretical framework to study exotic properties of both gapped and gapless flat-bands arising from their wave function singularities.