Sampling is the first step to convert analogue into digital signals and one of the basic concepts for information handling. All practical sampling systems, however, are accompanied with errors. Bandwidth-limited signals can be seen as a superposition of time-shifted sinc pulses, weighted with the sampling values. Thus, due to orthogonality, bandlimited signals can be perfectly sampled by a corresponding sinc pulse with the correct time shift. But, sinc pulses are just a mathematical construct. Sinc pulse sequences, instead, can simply be generated by a rectangular, phase-locked frequency comb. For a high repetition-time to pulsewidth ratio, or a low duty cycle, the pulses of such a sequence come close to single sinc pulses, and thus, the sampling with them might lead to an almost ideal sampling. Here, we present the full-field optical sampling with a repetition-time to pulsewidth ratio of up to 153, or a duty cycle of around 0.65%. Since it enables amplitude and phase sampling, ultrahigh sampling rates should be possible.