2013
DOI: 10.3182/20130904-3-fr-2041.00188
|View full text |Cite
|
Sign up to set email alerts
|

Flatness of Two-Input Control-Affine Systems Linearizable via One-Fold Prolongation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
19
0
4

Year Published

2014
2014
2021
2021

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 13 publications
(24 citation statements)
references
References 11 publications
1
19
0
4
Order By: Relevance
“…Therefore, in this case, for each fixed x ∈ X , the singular controls U sing ( x ) form a union of μ affine hyperplanes in double-struckRm, where 0 ≤ μ ≤ m − 1 is the number of distinct real roots of the polynomial c2,,mfalse(x,ũ1false). It follows that, if m is even, then flatness of differential weight n + m + 1 (for k = 0) always creates singularities in the control space (in the particular case of two controls m = 2, the singular set is an affine line in double-struckR2, see the work of Nicolau and Respondek), but if m is odd, then singularities of control may be absent; see the following example for which, for simplicity, we suppose m = 3.…”
Section: Main Results: Normal Formsmentioning
confidence: 99%
“…Therefore, in this case, for each fixed x ∈ X , the singular controls U sing ( x ) form a union of μ affine hyperplanes in double-struckRm, where 0 ≤ μ ≤ m − 1 is the number of distinct real roots of the polynomial c2,,mfalse(x,ũ1false). It follows that, if m is even, then flatness of differential weight n + m + 1 (for k = 0) always creates singularities in the control space (in the particular case of two controls m = 2, the singular set is an affine line in double-struckR2, see the work of Nicolau and Respondek), but if m is odd, then singularities of control may be absent; see the following example for which, for simplicity, we suppose m = 3.…”
Section: Main Results: Normal Formsmentioning
confidence: 99%
“…, 2 2 } besitzt einen vertikalen Annihilator der Form ( (1) ) ⊥ = span{ 0 , 1 } -dies bedeutet, dass die Variablen 0 und 1 nicht als Differentiale auftreten und somit als Eingänge für (1) in Betracht kommen. Darüber hinaus kommen die Variablen 0 und 1 im System (2) gar nicht vor, siehe (14) und (12). Die Variablen…”
Section: Theorem 4 Das Systemunclassified
“…. , , bilden nun eine Verallgemeinerung zu (12). Wir benutzen wieder die Partition der Koordinaten wie in (6), wobei hier der Index anders zu interpretieren als in (12) Dies wird aber (sofern möglich) nur für Systeme gelingen, bei welchen der flache Ausgang nicht von den Ableitungen der Eingangsgröẞen abhängt, dies folgt, da der flache Ausgang in enthalten ist, nämlich genau die in der Dekomposition (6).…”
Section: Flache Systeme In Dreiecksdarstellungunclassified
See 2 more Smart Citations