Serratula tinctoria (Asteraceae) accumulates mainly 3,39-dimethylquercetin and small amounts of 3-methylquercetin as an intermediate. The fact that 3-methylquercetin rarely accumulates in plants in significant amounts, and given its important role as an antiviral and antiinflammatory agent that accumulates in response to stress conditions, prompted us to purify and characterize the enzyme involved in its methylation. The flavonol 3-O-methyltransferase (3-OMT) was partially purified by ammonium sulfate precipitation and successive chromatography on Superose-12, Mono-Q, and adenosine-agarose affinity columns, resulting in a 194-fold increase of its specific activity. The enzyme protein exhibited an expressed specificity for the methylation of position 3 of the flavonol, quercetin, although it also utilized kaempferol, myricetin, and some monomethyl flavonols as substrates. It exhibited a pH optimum of 7.6, a pI of 6.0, and an apparent molecular mass of 31 kD. Its K m values for quercetin as the substrate and S-adenosyl-L-Met (AdoMet) as the cosubstrate were 12 and 45 mM, respectively. The 3-OMT had no requirement for Mg 21 , but was severely inhibited by p-chloromercuribenzoate, suggesting the requirement for SH groups for catalytic activity. Quercetin methylation was competitively inhibited by S-adenosyl-L-homo-Cys with respect to the cosubstrate AdoMet, and followed a sequential bi-bi reaction mechanism, where AdoMet was the first to bind and S-adenosyl-L-homo-Cys was released last. In-gel trypsin digestion of the purified protein yielded several peptides, two of which exhibited strong amino acid sequence homology, upon protein identification, to a number of previously identified Group II plant OMTs. The availability of peptide sequences will allow the design of specific nucleotide probes for future cloning of the gene encoding this novel enzyme for its use in metabolic engineering.Flavonoid compounds constitute one of the most ubiquitous groups of natural plant products. They exhibit a wide range of functions and play important roles in the biochemistry, physiology, and ecology of plants. These include their contribution to flower color, protection against UV radiation and pathogenic organisms, promotion of pollen germination and pollen fertility, and activation of Rhizobium nodulation genes. They also act as growth regulators, enzyme inhibitors, insect antifeedants, and antioxidants, and are of potential benefit to human health (Bohm, 1998, and references therein). Flavonoids owe their structural biodiversity to a number of enzyme-catalyzed substitution reactions (Ibrahim and Anzellotti, 2003).Of these, enzymatic O-methylation, which is catalyzed by a family of S-adenosyl-L-Met (AdoMet)-dependent O-methyltransferases (OMTs; Ibrahim and Muzac, 2000), involves the transfer of the methyl group of AdoMet to the hydroxyl groups of an acceptor molecule, with the concomitant formation of the corresponding methyl ether derivative and S-adenosyl-Lhomo-Cys (AdoHcy) as products. O-Methylation of flavonoids neutralizes th...