Natural microbiota plays an essential role in flavor compounds used in traditional food fermentation; however, the fluctuation in natural microbiota results in inconsistency in food quality. Thus, it is critical to reveal the core microbiota for flavor compound production and to construct a synthetic core microbiota for use in constant food fermentation. Here, we reveal the core microbiota based on their flavor production and cooccurrence performance, using Chinese light-aroma-type liquor as a model system. Five genera, Lactobacillus, Saccharomyces, Pichia, Geotrichum, and Candida, were identified to be the core microbiota. The synthetic core microbiota of these five genera presented a reproducible dynamic profile similar to that in the natural microbiota. A Monte Carlo test showed that the effects of five environmental factors (lactic acid, ethanol, and acetic acid contents, moisture, and pH) on the synthetic microbiota distribution were highly significant (P Ͻ 0.01), similar to those effects on a natural fermentation system. In addition, 77.27% of the flavor compounds produced by the synthetic core microbiota showed a similar dynamic profile ( Ͼ 0) with that in the natural liquor fermentation process, and the flavor profile presented a similar composition. It indicated that the synthetic core microbiota is efficient for reproducible flavor metabolism. This work established a method for identifying core microbiota and constructing a synthetic microbiota for reproducible flavor compounds. This work is of great significance for the tractable and constant production of various fermented foods. IMPORTANCE The transformation from natural fermentation to synthetic fermentation is essential in constructing a constant food fermentation process, which is the premise for stably making high-quality food. According to flavor-producing and cooccurring functions in dominant microbes, we provided a system-level approach to identify the core microbiota in Chinese light-aroma-type liquor fermentation. In addition, we successfully constructed a synthetic core microbiota to simulate the microbial community succession and flavor compound production in the in vitro system. The constructed synthetic core microbiota could not only facilitate a mechanistic understanding of the structure and function of the microbiota but also be beneficial for constructing a tractable and reproducible food fermentation process.