Comparative genomics of nucleosome positions provides a powerful means for understanding how the organization of chromatin and the transcription machinery co-evolve. Here we produce a high resolution reference map of H2A.Z and bulk nucleosome locations across the genome of the fly D. melanogaster, and compare it to that from the yeast S. cerevisiae. Like Saccharomyces, Drosophila nucleosomes are organized around active transcription start sites in a canonical −1, NFR (nucleosome-free region), +1 arrangement. However, Drosophila does not incorporate H2A.Z into the −1 nucleosome and does not bury its transcriptional start site in the +1 nucleosome. At thousands of genes, RNA polymerase II engages the +1 nucleosome and pauses. How the transcription initiation machinery contends with the +1 nucleosome appears to be fundamentally different between lower and higher eukaryotes.Knowledge of the precise location of nucleosomes in a genome is essential in order to understand the context in which chromosomal processes such as transcription and DNA replication operate. A common theme to emerge from recent genome-wide maps of nucleosome locations is a general deficiency of nucleosomes in promoter regions and an enrichment of certain histone modifications towards the 5′ end of genes [1][2][3][4][5][6][7] . A high resolution genomic map of nucleosome locations in the budding yeast S. cerevisiae has further revealed Correspondence and request for material should be addressed to B.F.P. (bfp2@psu.edu). * These authors contributed equally to this work.Author Information Sequence data deposition is through NCBI Trace Archives TI SRA000283, Sequencing Center = "CCGB", and microarray deposition through ArrayExpress, Accession numbers E-MEXP-1515 and -1519. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interest.Author Contributions T.M. prepared and purified the nucleosomes including Pol II-bound nucleosomes; C.J. analyzed the nucleosome mapping data and its relationship to other genomic features; I.P.I. performed computational analyses related to nucleosome positioning sequences; X.L. conducted ChIP-chip on Pol II; B.J.V. conducted ChIP-chip on nucleosome-Pol II interactions; S.J.Z. provided bioinformatics support; L.T. constructed libraries and sequenced nucleosomal DNA; J.Q. mapped sequencing reads to the yeast genome; RG provided H2A.Z antibodies; SCS directed the DNA sequencing phase; DSG directed embryo preparations and helped interpret the data; I.A. developed computational approaches to derive nucleosome maps from the read locations and developed the associated browser; B.F.P. directed the project, interpreted the data, and wrote the paper. S6). Those 112,750 nucleosomes detected three or more times were further analyzed, although patterns were identical when all nucleosomes were analyzed. The internal median error of the data was 4 bp (Fig. S7). H2A.Z nucleosomes were predominantly distributed at 175 bp intervals from the TSS (compared to 165 ...