Samples that were meant to simulate the behavior of neural implants were put into Ringer’s solution, and the occurring damage was assessed. The samples consist of an interdigitated gold-structure and two contact pads embedded between two Polyimide layers, resulting in free-floating structures. The two parts of the interdigitated structure have no electric contacts and are submerged in the solution during the experiment. The samples were held at temperatures of 37 and 57 ∘C in order to undergo an accelerated lifetime test and to compare the results. During the course of the experiment, a voltage was applied and measured over a resistance of 1 kOhm over time. Arduinos were used as measuring devices. As the intact samples are insulating, a sudden rise in voltage indicates a sample failure due to liquid leaking in between the two polyimide layers. Once a short-circuit occurred and a sample broke down, the samples were taken out of the vial and examined under a microscope. In virtually all cases, delamination was observable, with variation in the extent of the delaminated area. A comparison between measured voltages after failure and damage did not show a correlation between voltage and area affected by delamination. However, at a temperature of 37 ∘C, voltage remained constant most of the time after delamination, and a pin-hole lead to a lower measured voltage and strong fluctuations. Visually, no difference in damage between the 37 and the 57 ∘C samples was observed, although fluctuations of measured voltage occurred in numerous samples at a higher temperature. This difference hints at differences in the reasons for failure and thus limited applicability of accelerated lifetime tests.