The paper addresses the discrete characteristics of the processing crowdsourcing task scheduling problem in the context of social manufacturing, divides it into two subproblems of social manufacturing unit selecting and subtask sorting, establishes its mixed-integer programming with the objective of minimizing the maximum completion time, and proposes an improved artificial hummingbird algorithm (IAHA) for solving it. The IAHA uses initialization rules of global selection, local selection, and random selection to improve the quality of the initial population, the Levy flight to improve guided foraging and territorial foraging, the simplex search strategy to improve migration foraging to enhance the merit-seeking ability, and the greedy decoding method to improve the quality of the solution and reduce solution time. For the IAHA, orthogonal tests are designed to obtain the optimal combination of parameters, and comparative tests are made with variants of the AHA and other algorithms on the benchmark case and a simulated crowdsourcing case. The experimental results show that the IAHA can obtain superior solutions in many cases with economy and effectiveness.