2013
DOI: 10.1007/978-3-642-42042-9_15
|View full text |Cite
|
Sign up to set email alerts
|

Flexible Nonparametric Kernel Learning with Different Loss Functions

Abstract: Abstract. Side information is highly useful in the learning of a nonparametric kernel matrix. However, this often leads to an expensive semidefinite program (SDP). In recent years, a number of dedicated solvers have been proposed. Though much better than off-the-shelf SDP solvers, they still cannot scale to large data sets. In this paper, we propose a novel solver based on the alternating direction method of multipliers (ADMM). The key idea is to use a low-rank decomposition of the kernel matrix Z = X Y, with … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?