Flexible polyurethane foams were prepared from solid waste residue derived from the hydrothermal acid treatment of the Arundo donax L. herbaceous biomass, which produced a very high yield of levulinic acid. An innovative, sustainable, and green liquefaction route was adopted to produce lignin-based flexible polyurethane foams by partially replacing fossil-fuel source polyols with an abundant and renewable hydroxyl source, the Arundo donax L. "lignin-like" residue. Lignin liquefaction was performed in polyolic solvents using microwave irradiation, saving time and energy while ensuring a more sustainable and green approach. Foam production was performed with controlled expansion using the "one-shot" technique. Water was adopted as the only blowing agent, and the isocyanate index (NCO/OH) was kept to less than 100, which reduced the cross-linking degree of the desired foam and increased its flexibility. About 7 wt.% of the conventional petrochemical polyether polyol was replaced with the Arundo donax L. hydrolysis residue. The chemical and mechanical properties of the synthesized foams were compared with those obtained by using a pure technical soda lignin, ProtoBind 1000. The results were characterized by satisfactory mechanical properties, thus closing the biorefinery cycle of Arundo donax L. exploitation.