Wind and solar PV have become the lowest-cost renewable alternatives and are expected to dominate the power supply matrix in many countries worldwide. However, wind and solar are inherently variable renewable energy sources (vRES) and their characteristics pose new challenges for power systems and for the transition to a renewable energy-based power supply. Using new options for the integration of high shares of vRES is therefore crucial. In order to assess these options, we model the expansion pathways of wind power and solar photovoltaics (solar PV) capacities and their impact on the renewable share in a case study for Germany. Therefore, a numerical optimization approach is applied on temporally resolved generation and consumption time series data to identify the most efficient and fastest capacity expansion pathways. In addition to conventional layouts of wind and solar PV, our model includes advanced, system-friendly technology layouts in combination with electric energy storage from existing pumped hydro storage as promising integration options. The results provide policy makers with useful insights for technology-specific capacity expansion as we identified potentials to reduce costs and infrastructural requirements in the form of power grids and electric energy storage, and to accelerate the transition to a fully renewable power sector.