2022
DOI: 10.48550/arxiv.2201.10179
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Flexible skylines, regret minimization and skyline ranking: a comparison to know how to select the right approach

Abstract: Recent studies pointed out some limitations about classic top-k queries and skyline queries. Ranking queries impose the user to provide a specific scoring function, which can lead to the exclusion of interesting results because of the inaccurate estimation of the assigned weights. The skyline approach makes it difficult to always retrieve an accurate result, in particular when the user has to deal with a dataset whose tuples are defined by semantically different attributes. Therefore, to improve the quality of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?